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1. INTRODUCTION )

The counting process approach to the analysis of life history data has been explored I
extensively in the last one and a half decades. This approach demands accurate observa-
tion of time, as pointed out by Arjas (1985). Inaccuracy of measurements often lead to
tied data, which must be treated in an ad hoc manner. Therefore, in spite of the natural
appeal of time as a continuous parameter, Arjas advocated a discrete time formulation
of the counting process approach. Arjas and Haara (1987) proposed a discrete time lo-
gistic regression model and analysed it using a discrete time ‘counting’ process approach.
The asymptotic normality of the regression estimators was established via a martingale
convergence theorem, as the observation time goes to infinity. The authors used this
approach also for a generalised Cox regression model; see Arjas and Haara (1988).
A discrete time formulation was also proposed by Hjort (1985). He defined the de-
terministic intensity in discrete time in the special case of survival data and presented
its maximum likelihood estimator (mle) based on the likelihood function for a partially
censored data set. In order to derive the asymptotic properties of his estimator, he as-
sumed the discrete measurements to be samples of an originally continuous phenomenon
and let the sampling interval go to zero at a desired rate, as the number of subjects in
the study go to infinity.
In the earlier literature on Survival Analysis (see Kalbfleisch and Prentice, 1980
and Lawless, 1982) parametric and nonparametric estimation of survival function from
censored survival data has been discussed. Testing and regression problems have also
been considered. Usually the number of groups is finite in these formulations.
In addition to the arguments of measurement inaccuracy and discretised or grouped
data, we would like to point out that discrete data may arise naturally in machines suc!ll |
as computers and computer-controlled devices which operate with a digital clock We '|
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process approach deserves more attention than
what it has received so far,

In this paper, inference on a discrete time counting process is viewed from a different
angle. No assumption is made about the origin of the discrete nature of the data.
The asymptotic arguments apply as the number of individuals, rather than the length
of the observation period, goes to infinity. Even if the data originates from sampling a
continuous time process, the time between the samples is not assumed to decrease at a
specific rate. )

The model is formulated in Section 2. The issues related to estimation and testing
are discussed in Sections 3 and 4, respectively.

2. THE MULTIPLICATIVE INTENSITY MODEL IN DISCRETE TIME

Let (2, F,P) be a probability space and for i = L,2,...,nand h = 1,2,...,H,
{ALin(k)}k>1 be a family of stochastic processes having discrete parameter k, state
space {0,1} and defined on (2,F). Let Fro = {¢, 9} and F,; be the smallest sub-
o-algebra of F with respect to which {ALin(I)}1<1<x are measurable for each ; and k.
We further define ANpn(k) = 3% ALy (k) and Non(k) = T, ANyi(k). The process
{Non(k)}i>1 can be thought of as a ‘counting’ process with the discrete time parameter
k. [Henceforth we shall drop the index & to indicate a sequence over k > 1.] The index n
indicates the aggregate over n individuals, while h represents the type label. We impose
the following restriction on Agg(k):

AL TIL ALi(k) < 1.

This assumption says that the same individual can not have two different types of jump
at the same time. We can define the predictable process A, as

Ann(k) = E[ANop (k)| Fp ).

This process is analogous to the stochastic intensity of a usnal counting process. In the
same manner as Aalen (1978) we postulate that

E[ALih(k)l}-n,k—l] = ah(k)X,-h(k) a.s. (1)

where for each h, Xy, ... » Xna are predictable binary processes which are independent

and identically distributed. One the other hand the deterministic sequence ay, is defined
as

an(k) = {P[ALih(k) = UXin(k) = 1] if P[Xi(k) = 1] >0
0 otherwise
for any i. We put the following extra condition on Xin(k):

A2. There is a partition {H,H,,..., Hn}of theset {1,2,..., H} such that the following
holds:

Xin(k) =1 and h € H, implies X;, (k) = {(1) gg : g i
This means the types of jumps

can be grouped in such a manner that an individual
can be ready for only one grou

p of jump types at a time. This is a very reasonable
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assumption that helps simplify the likelihood expression in the next section. From (1) it

follows that
An(k) = an(k)Yan(k) as.

where Yau(k) = iy Xin(k), the number (out of n) of individuals ready for a type
h jump at time k. We shall call o the deterministic intensity of type h transitiml_
The above is similar to the celebrated multiplicative intensity model (Aalen, 1978). Thé
crucial difference of the above model with Aalen’s model is that while the time parameter
in the latter is allowed to take values in an interval of the form [0, T, no restriction of
finiteness is necessary on the discrete time here. Further, multiple jumps of the process
N, are allowed. In this respect it is comparable to Johansen’s (1983) extension of the
Aalen model. On the other hand, a specific decomposition of the processes N ) and '
are necessary here, unlike the corresponding processes in the continuous time case. The
advantage of this assumption will be apparent in the next section. It may not be very
restrictive, since we do not know of any real application of the continuous time model
where this decomposition does not hold.

We conclude this section with discrete time versions of two examples from Andersen

and Borgan (1985).

EXAMPLE 1: Survival data with random right-censoring. Suppose the independent
and identically distributed (ii.d.) censored lifetimes of n individuals are denoted by
Ty, T2, ..., Tn. These assumed to be positive and integer-valued, while any unit of time
can be used. Let 61,82, ...,6- be the corresponding censoring indicators. For 1 < i< n
and each k € IN we define AL;(k) to be the indicator of {Ti = k,é = 1}, dropping the
subscript h for simplicity. Then (1) holds with X;(k) as the indicator of {T; > k}. One
can interpret Yn(k) as the number of individuals at risk at time k. If the censoring time
and the notional lifetimes are independent, a(k) becomes the discrete hazard rate.

ExXAMPLE 2: Finite state Markov chain. Suppose we have n samples from a discrete
parameter Markov chain with a finite number of states and having H possible types of
transition. For h = 1,2,...,H,i=1,2,...,nand k € IN we define AL;r(k) as the
indicator of the event that a ‘type h’ transition occurs to individual 7 at time k. Thus
ap(k) becomes a transition probability. Note that the assumption A2 holds here with
m equal to the number of non-absorbing states in the Markov chain and the set H,
represents the indices of types of transitions that are possible from the rth stafe. In the
special case of competing risk data, ALi(k), Xin(k) and ap(k) are the indicator of death
from cause h, the indicator of being alive (irrespective of i) and the discrete cause-specific
hazard rate, respectively. Similar interpretations can be given in the special case of the
illness-death model.

3. NONPARAMETRIC ESTIMATION OF DETERMINISTIC INTENSITY

3.1. The maximum likelihood estimator. The likelihood function is
1-°0  ALin(k)

H n H
H {H ah(k)AN,.h(k)} H (1 = Z ah(k)X;h(k))

k h=1 i=1 h=1
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In view of assumption A2, the likelihood function reduces to

1 { I1 ah(k)A”"_"“‘)} (1— S an(k)

Yan(6) =3 0 ANwa (k)
k r=1| \ heH, heH, )

which is evidently maximised by the estimator
Bnn(k) = Jun(k)Y,! (K) AN (k) (2)

where Jy,,(k) is the indicator of the event Yun(k) > 0. 1t is interesting to note that the
maximisation of the likelihood function is much more difficult in the continuous time
case (see Karr, 1987) unless the model is modified in some manner (Johansen, 1983;
Jacobsen, 1984). We emphasize the importance of assumption A2 here. Since it holds in
most practical situations, unrestricted maximisation of the likelihood may be misleading.

From (2) one can also find the mle of the discrete cumulative intensity (given by
Yk an(D). Its computational form coincides with that of the Nelson-Aalen estimator
(Aalen, 1978). In the case of survival data with censoring time independent of notional
lifetime, the nonparametric ml or Kaplan Meier estimator of the survival function is
given by [Tix;<k(1 — @n(ki)) where ky,k,... are the times of observed death. When
transformed to get an estimator of the hazard rate, it produces (2), as expected. It is
also not surprising that Hjort (1985) found (2) as the mle of & in this special case.

3.2. Bias of the mle. Note that
Gnn(k) — an(k) = Jun (k)Y 5 (k) AMan(k) = (1 = Jun(k))an (k) (3)

where AMpp(k) = ANpu(k) - Ann(k) is a martingale difference with respect to the
filtration {F, x}k>1. It follows that

Elann(k) — an(k)] = —ap (k)P [ Xqu(k) = 0].

Thus the estimator has a finite negative bias (unless Xy5(k) > 0 a.s.) which goes to 0 at
an exponential rate as n — oo.

3.3. Consistency. Consider the space S of all real sequences endowed with the Fréchet
metric defined by

ey) = S g-k_18(K) —y(k)|
p( ,y)—kZz‘;Z T+ eyl YVES

where z(k) is the kth coordinate of the sequence z. Suppose (2,8, P) is a probability

space and Z;, Zy, ... is a sequence of functions mapping from  into S, while Z is another
such function.

THEOREM 3.1. The sequence {p(Z,, Z)}n>1 converges to 0 in probability if and only
if {Zn(k)}n>1 converges to Z(k) in probability for each k € IN.
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ProOOF. The ‘only if’ part is easy to prove. To prove the ‘if’ part let 0 < ¢ < | and
k be an integer satisfying 27% < ¢. Then

_ /u ” !}| —k
Plp(Zn,Z)>€¢ < P 2" Se—2
lp(Zn, 2) > ] < Ll FRVAGEY() e

k L
—’_Mﬂ_ =27\
: P[IE_JI{ i‘l'l/n[! ZUH ” (]_2—k>2 }}

k
SO Pz - Z() > (e = 27F)1 = 7).

=1

IN

Since the limit of the last expression as n — oo is 0, the theorem is proved. 0O

In view of the above theorem, the sequence @y is consistent as long as Ef[an(k) —
ay(k)]? goes to 0 for each k as n — co. Indeed, some algebraic manipulations show
that the mean squared error is

ah(k)P"[X1a(k) = 0] + an(k)(1 — an( )Z ( >P [X1a(k) = 1P 7 [X1a(k) = 0],

The above is identically 0 when P[X;x(k) = 1] = 0. Otherwise the second term is upper-
bounded by 2nYa,(k)(1 — ax(k))/P{Xin(k) = 1]. This establishes the required mean

square convergence.

3.4. Asymptotic normality. The topology induced by p on 'S is the product topology.
Indeed, the convergence of a sequence in S is equivalent to the convergence of each
coordinate in IR with respect to the Euclidian norm. It can be shown that the space S is
complete and separable with respect to the metric p. Suppose S is the Borel o-algebra
on S and {P,},.>1 is a sequence of probability measures on (S,S). Then the tightness
of this sequence is equivalent, by Prohorov’s theorem, to its relative compactness. In
such a case the convergence of all finite-dimensional marginal distributions of { P }n>1
implies weak convergence of the entire family (see Billingsley, 1968, page 35). Therefore
one only needs a suitable compact subset of S in order to relate weak convergence of the
coordinates to that of the family. It can be shown that a subset T' of S has a compact
closure if and only if the subset {z; : £ € T} of IR is bounded for every k (see Billingsley,
1968, page 219). Thus we have the following theorem on the sequence {Pn}n>1.

TreoreEM 3.2. Suppose for each i € (0,1) there is a pusmve sequence {Bj}r>1
such that infuen Po[T] > 1 — 1 holds with T = (Visq{2 : |2(k)| < Bi}. Then the weak
convergence of all finite-dimensional marginal distributions of { Py }n>1 implies the weak
convergence of the entire family.

Let Z and Zy, Z,,... be mappings from £ to S. Then the above theorem can be
restated as follows.

COROLLARY 3.3. Suppose for each n € (0,1) there is a positive sequence { B}t
such that
in}fV P[|Z,(k)| < By for each k € IN] > 1 — .
ne
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Then {Zn}n>1 converges weakly to Z if and only if for each | € IN and every subset
R i;} of IN the sequence of random vectors {Z,(i1), Zn(#2),. .., Zn(%1)} converges
weakly to the random vector {Z(i1), Z2(i2), ..., Z(i1)} as n — o0,

The sufficient condition stated above is easily verified for v/n(&nn(k)— an(k)). Indeed

P[y/n|anun(k) — an(k)] < Bhx for each h, k]

H
1= P | U{1@un(k) - an()] 2 7/ Bne}

k>1h=1

H
1-3 > o7 Bl El@nn(k) — an(k))*.
k>1 h=1

v

One can choose Byx = 1 whenever P[X14(k) = 1] = 0. Otherwise it can be chosen in
such a way that

Chi + 2a(k)(1 = en(k))/P[Xun(k) = 1] < BiynH ~'27*

where Chi is an upper bound of the convergent sequence {naZ(k)P*[Xin(k) = O]}n>1.
The sufficient condition of Corollary 3.3 is then satisfied.

Convergence of any finite-dimensional marginal distribution to a multivariate normal
one essentially rests on the fact that the second term in (3) decreases faster than the first
and that AMp,(k) can be written as the sum of iid variables AL (k) — an(k)Xin(k). A
standard multivariate central limit theorem (e.g., Theorem 29.5 of Billingsley, 1985) can
be used. The limiting covariance of v/n(@nna(k) — ap(k)) with \/n(@ng(1) — ag(l)) can be
shown to be zero unless | = k, in which case it is given by

an(k)(1 — ap(k))/ E[X1n(k)] ifg=h,
(k) = { —an(RK)og(K) BL(R)] i g # by hyg € H, for some r,
0 ifg#h, heH,g€ Hs,s#T.

The fact that Xy,(k) is either equal to X;,(k) or 1 — X;4(k) (depending on whether
h and g belong to the same H,) has been used in deriving the above. That 7h,(k) is
not necessarily 0 for g # h underscores the complications arising from different kinds
jumps being allowed to occur (to different individuals) at the same time. The covariance
can be consistently estimated by replacing o (k) and ag4(k) by their respective mle’s

and E[X;4(k)] by n='Y,4(k) in the above expression. We call this estimator T,g4(k) for
future reference.

4. TESTS OF HYPOTHESES

4.1. The one-sample problem. Suppose o, ...,a% are specified sequences and we want
to test

Ho:ap=0l, h=12,....H (4)

I(/)Vne can use Ty = \/E):kzl Wan(k)(@nn(k) — Jan(k)af(k)) for this purpose, where

nh are predictable sequences converging to (possibly unknown) non-random real se-
Quences for each h. The covariance of Ty, and Tng can be consistently estimated by
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Yk>1 Wig (k)W (K)Tngn(k). Thus one can form an asymptotically normal statistic for
H = 1 and asymptotically x%-distributed statistic for H > 1.

4.2. The K-sample problem. Suppose N,(,}), . .,N,g;)

ing processes and we want to test

are independent H-variate count-

Ho: eV =o@ =.=a{, =12, H (5)
Following Aalen (1978) one can combine the samples and compare the pooled estimator
of ay, with the estimator from individual samples. The reader is referred to Sengupta
and Jammalamadaka(1990) for a detailed discussion of the resulting test statistic.

In the special case of K = 2, the statistic Un = T!C:'T, can be used, where the

components of T, and C), are given by

To(k) = VA 'S Wank)@ED, (k) - a0, (k)
k>1
Cone = 5 Wan(E)Wag(B)FD,(B) + FEhg(R))

E>1

where Wy (k) is a weight function as before. The asymptotic distribution of Uy is x7%.
The above test was applied to the data on mating rates of ‘Ebony’ and ‘Oregon’ flies,
which was also examined by Aalen (1978). The data consists of time measured in seconds
from introduction in control chamber to the initiation of mating. Since the measurements
are discrete, the method discussed here is directly applicable. The statistic Uy, produced
two-sided p-values of 3.1 x 10~ and 2.5x 10~ for Wy(k) = n1Y, O (k) (k) /[ (k) +
Y,ﬁ;“](k)] and Wy(k) = n‘g)’,{,”{k)Y,ff)(k], respectively. Thus the hypothesis of equal

(discrete) mating rates is rejected.

4.3 Other tests. In the same manner as above, one can formulate a test for equality of
components or groups of components of a multivariate intensity function. The asymptotic
results of Section 3 will again be useful. An important potential application of this test
is in comparing cause-specific hazards of competing risks.

Another hypothesis of interest in the context of two samples is a
some unknown #. A starting point would be to define the estimator

(k) = 0@ (k) for

D AR
T e WalR)ES) (k)

=)

where W, is a suitable weight function. The asymptotic normality of (O — 0) is
easy to establish, while a computational formula for the asymplotic variance can also
be obtained routinely. This gives a test for a® = ByalV) for fixed fp. A reasonable
“n_waﬁ,'ﬂ(k)) where M, is
ta and

statistic for the original problem is /1 3 k>4 Mn(ﬁc)(fig.z,)(k) -
another weight function. Further details of these tests may be found in Sengup

Jammalamadaka(1990).
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CONCLUDING REMARKS

The asymptotic approach used here is not a competitor of that used by Arjas (1985).
His approach of letting the observation time go to infinity is motivated by a desire to
process the data in real time and is suitable for regression models, where information
tends to accumulate with time. Our approach uses all the data at a time and is suitable
for estimation and testing involving the deterministic Intensity. We believe that the two
approaches will be useful in analysing real data in a somewhat complementary manner.
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